
Low Overhead Security Isolation
using Lightweight Kernels and TEEs
John R. Lange (ORNL/Pitt), Nicholas Gordon (Pitt), Brian Gaines (SNL)

Post Exascale HPC OS/R Challenges

• Security is becoming increasingly important on large scale HPC systems
• Edge Integration will introduce co-located workloads from new users
• Data centric AI/ML workloads will require access to sensitive/protected data
• Federation of HPC resources will require cross organizational identities

• Existing HPC OS/Rs still rely on traditional security controls
• Unix account identities
• Unix file permissions

• Increased security requirements will require more extensive OS/R security capabilities

• This work:
• First step towards leveraging trusted computing hardware features to enable secure

compartmentalization of HPC OS/Rs
• Combine Lightweight Kernels and Trusted Hypervisors

Trusted Computing Capabilities

• Hardware security features are becoming prevalent
• Intel SGX, ARM TrustZone, AMD SEV

• Not a HPC viable solution yet, but we’re heading in the right
direction

• Necessary Features:
• Isolated Execution

• Sealed Storage

• Attestation

TEE Features

• Isolated Execution provides isolated HW resources on an untrusted platform
• Hardware protected confidentiality and integrity for code and data
• External software cannot access enclave memory
• Enclaves are permitted to access external memory

• Sealed storage allows for the long-term secure storage of protected information

• Local and remote attestation allows verification of the authenticity of an enclave
• Local attestation has limited utility for distributed systems

• Enclaves are protected from co-located applications and malicious
OS/Hypervisors

Current TEE approaches

• Intel SGX
• Isolated Execution, Sealed Storage, Local + Remote attestation

• Enclaves have limited functionality (i.e. no system calls)

• ARM TrustZone
• Isolated Execution, Sealed Storage, only Local Attestation on some platforms

• Can Isolate full OS/Hypervisor stacks

• Designed for commodity/handset devices

• AMD SEV
• Isolated Execution for Virtual Machines

TEEs for HPC

• Ideal solution is probably a combination of SGX and TrustZone
• Memory isolation and encryption

• Scalably attestable execution environments

• Dynamic instantiation of TEE instances

• Secure I/O capabilities

• Dynamic resource assignment

• We’re heading in the right direction…

Hardware Trends

• We’re heading in the right direction…

This work

Hafnium Trusted Hypervisor

• Hafnium:
• “A reference Secure Partition Manager (SPM) for systems that

implement the Armv8.4-A Secure-EL2 extension”

• www.trustedfirmware.org

• Type 1 hypervisor running at EL2
• Statically partitions memory at boot time

between pre-configured VMs
• Acts as a secure dispatcher for VM contexts

• Relies on Primary VM (Linux) to provide CPU
scheduling

• Can leverage TrustZone partitioning

http://www.trustedfirmware.org/

Trusted Hypervisors for HPC

• Problem: Every vCPU managed by Linux scheduler
• Every vCPU is implemented as a kernel thread
• The primary VM runs on every core

• Our approach:
• Use an LWK (Kitten) for scheduling
• Retain Linux for Management

• Kitten runs on every CPU core
• Linux constrained to a subset of cores

• Pros:
• Reduced Timer tick rate
• Overheads from Linux background tasks

constrained

Kitten as the Primary VM

• Ported Kitten to ARM64
• Started at SNL, finished at Pitt
• Supports Qemu, Raspery Pi, Pine A64
• Upstreamed to Kitten

• https://github.com/HobbesOSR/kitten/

• Implemented Hafnium hypercall
interface
• Basic CPU context switching API
• Hardware timer delivery

Kitten as a Secure VM

• ARM generally assumes TEEs have very limited functionality
• Secure Secret Storage, Secure IO for identity verification, etc.

• Hafnium doesn’t provide full hardware virtualization support
• Disables everything possible to minimize attack surface
• Some of these things are necessary to run full OS

• E.g. cycle counters

• Adding Linux support is ongoing, but initially we focused on Kitten

• Running Kitten as a secure VM required modifying both Kitten and Hafnium
• Hafnium modified to be more permissive

• Should still be secure, but a full audit is needed
• Kitten modified to support Hafnium’s para-virtual VM environment

• Para-virtual interrupt controller and timer

Evaluation

• This is a preliminary prototype with very rough edges, so…
• Lots of Caveats

• All evaluation was performed on a single Pine A64 LTS SBC

• 4 Core Allwinner A64 (1.152 GHz)
• 2GB RAM
• https://www.pine64.org/devices/single-board-computers/pine-a64-lts/

• Benchmark runs were small due to constrained memory

• Limited number of benchmarks were able to run due to compatibility issues
and/or bugs

• No competing workloads and no Linux management VM

https://www.pine64.org/devices/single-board-computers/pine-a64-lts/
https://www.pine64.org/devices/single-board-computers/pine-a64-lts/
https://www.pine64.org/devices/single-board-computers/pine-a64-lts/
https://www.pine64.org/devices/single-board-computers/pine-a64-lts/
https://www.pine64.org/devices/single-board-computers/pine-a64-lts/
https://www.pine64.org/devices/single-board-computers/pine-a64-lts/
https://www.pine64.org/devices/single-board-computers/pine-a64-lts/
https://www.pine64.org/devices/single-board-computers/pine-a64-lts/
https://www.pine64.org/devices/single-board-computers/pine-a64-lts/
https://www.pine64.org/devices/single-board-computers/pine-a64-lts/

Memory benchmarks + HPCG

 • HPCG, Stream and RandomAccess
• Results reported as normalized

Memory benchmarks + HPCG

 • HPCG, Stream and RandomAccess
• Results reported as normalized

No significant
difference in Stream
and HPCG

Memory benchmarks + HPCG

 • HPCG, Stream and RandomAccess
• Results reported as normalized

Virtualization added
noticeable overhead
and the Linux
scheduler impacted
performance by ~5%

NAS Parallel Benchmarks

 • Subset of NPB programs
• Results reported as normalized

NAS Parallel Benchmarks

 • Subset of NPB programs
• Results reported as normalized

Linux scheduler
degrades LU
performance by ~3%

NAS Parallel Benchmarks

 • Subset of NPB programs
• Results reported as normalized

Other benchmarks
show negligible
overhead

Future Work (Short term)
 • Deploy on HPC class resources
• Looking to support the Astra system (ThunderX2) at Sandia
• ThunderX2 and A64FX testbed systems at Oak Ridge

• Full audit of Hafnium security features

• Hafnium is a very restrictive environment
• What restrictions are necessary vs overly cautionary

• Add support for Linux as a secondary

• Will require extensive changes to Hafnium
• Need better support for IO partitioning
• Need to implement secure IRQ partitioning/routing

Future Work (Long Term)

• Hafnium is not designed for HPC
• Static hardware partitions
• Statically pre-configured VMs
• Limited cross partition communication

• ARM hardware is changing
• TEE capabilities are expanding in ARMv9

• Claim: There will be a need for a node level trusted

hypervisor/partition manager designed specifically for HPC
environments.
• An open question is whether it will be hardware or software based

Conclusion

• Secure OS/R compartmentalization will be a key enabling feature
post Exascale
• Can be achieved on current and future hardware

• Trusted computing frameworks are designed for commodity use

cases
• There is a need and an opportunity for trusted computing system

software designed specifically for HPC

• We have presented an initial proof of concept of one such

approach

Questions?

